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Abstract

Temporal aggregation biases estimates of monetary policy effects. We hypothesize that informa-
tion mismatches between private agents and the econometrician—the source of temporal aggrega-
tion bias—are as important as the more studied mismatch between private agents and the central
bank (the “Fed information effect”) in the study of monetary policy transmission. In impulse re-
sponses from both local projections and an unobserved components model, we find that the re-
sponse of daily inflation to high-frequency monetary shocks confirms theoretical predictions. If there
is an adverse-signed response such that inflation increases in response to a contractionary monetary
shock, it is much less prominent than previously thought and explained by frequency mismatches of
shocks and dependent variables.
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1 INTRODUCTION

This paper revisits a fundamental question of monetary economics: What is the transmission of mon-

etary policy to the economy? Empirical work often finds that responses of macroeconomic variables to

monetary policy shocks have the opposite sign of what standard theory predicts. Researchers trace these

adverse responses to information issues, with existing solutions consisting of either adding more infor-

mation [Sims (1992)] or emphasizing information mismatches between central banks and private sector

agents as a “Fed information effect”.1

We propose temporal aggregation bias as a new information-based explanation for the adverse trans-

mission of monetary policy. When using the daily CPI from the Billion Prices Project [Cavallo and Rigobon

(2016)] as a temporally disaggregated macroeconomic indicator, we find that the adverse response of

inflation is short-lived, if it is present at all. We argue that existing work on monetary policy transmis-

sion finds an adverse response because of the frequency mismatch between the information sets of the

econometrician and private agents. A temporally disaggregated measure of inflation overcomes this mis-

match by better aligning the frequencies of shocks and dependent variables.

To understand how one can obtain a sizable adverse response to monetary policy shocks with monthly

or quarterly data when only a limited adverse response actually exists, we combine a simple model of

temporal aggregation bias with informal and formal empirical evidence. We begin by using Monte Carlo

evidence to show how there is no clean identification of monetary policy transmission when time ag-

gregating with local projections. We then use a well-known model from the monetary policy literature

consisting of an Euler equation and a monetary policy rule to show how temporal aggregation can exac-

erbate initial impulse response functions.

Our main finding—the response of inflation is conventionally-signed with only a short-lived adverse

response if one is present at all—is obtained from the local projection specification advocated by Naka-

mura and Steinsson (2018b). The monetary policy shocks are identified via high-frequency variation

in asset prices around monetary policy announcements, as is standard in the literature [Kuttner (2001),

Gürkaynak et al. (2005), Campbell et al. (2012), Nakamura and Steinsson (2018a), Bu et al. (2021)]. We

establish that temporally aggregated high-frequency measures of inflation correlate well with official

lower-frequency measures (e.g. monthly CPI) over our sample period (July 2008 to August 2015). Our

empirical tests corroborate the claim that the high-frequency measure of inflation is “good at anticipat-

ing major changes in inflation trends,” [emphasis added, Cavallo and Rigobon (2016)]. We thus align the

frequency of our variable of interest (inflation) more closely to the frequency of variation used to identify

shocks. Impulse response functions show the response of inflation to a contractionary monetary policy

shock is positive for a few weeks with a 90% credible set covering zero over this time horizon and negative

thereafter.

Because the effect of temporal aggregation bias in local projections depends on the timing of high-

1Bauer and Swanson (2023), Bu et al. (2021), and Caldara and Herbst (2019) also emphasize adding more information. For a
“Fed information effect" see Romer and Romer (2000), Campbell et al. (2012, 2017), Nakamura and Steinsson (2018a), Jarocinski
and Karadi (2020), Miranda-Agrippino and Ricco (2021), Lunsford (2020), Hoesch et al. (2021), Cieslak and Schrimpf (2019),
Acosta (2022), Sastry (2021), Karnaukh and Vokata (2022), Lewis (2020), Bundick and Smith (2020), Andrade and Ferroni (2021),
Golez and Matthies (2021).
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frequency shocks, we build an unobserved components model that explicitly incorporates when mone-

tary policy shocks occur within a month. This state space model adds the daily CPI and daily break-even

inflation rates as well as possible effects of monetary policy shocks into a model of inflation dynamics

along the lines of Stock and Watson (2016) and Nason and Smith (2020). These impulse responses cor-

roborate our local projection results by showing conventionally-signed transmission of monetary policy.

Our contribution of temporal aggregation bias as an explanation for the transmission of monetary

policy shocks provides further support for the ongoing claim, dating back to at least Kuttner (2001), that

monetary policy needs to be studied in a high-frequency environment. Even though high-frequency eco-

nomic indicators and temporal aggregation theory have been available for decades, we are the first—to

our knowledge—to apply them to the study of monetary policy transmission.2 By pairing high-frequency

shocks with high-frequency response variables, our work follows existing specifications that estimate the

transmission of monetary policy shocks to financial indicators.3 Financial indicators, however, may not

be as susceptible to temporal aggregation bias as macroeconomic indicators because the former are ob-

servable at high frequencies. By contrast, economic indicators are accumulated over a fixed time inter-

val and published with a lag, resulting in aggregation bias from potentially mismatched information sets

between private agents observing high-frequency indicators and an econometrician relying on official

releases.4

Unlike other studies, where competing methodologies or conditioning on different data serves to ob-

fuscate analysis, a distinct advantage of our approach is the consistency in inference. We condition on

the same data and apply the same methodology with the only distinction being the frequency of the data.

An increase in the frequency of inflation observations eliminates adverse monetary impulse responses.

Because our temporal aggregation results are generic, we argue that the benefits of using high frequency

data are neither limited to the study of monetary policy transmission nor prices and will be a key feature

of the nascent field of high-frequency macro [Baumeister et al. (2021), Lewis et al. (2021)]. In a macroe-

conomic environment characterized by fast-moving turning points, such as the Great Financial Crisis or

the COVID-19 recession, estimates of policy effects may be sensitive to the sampling frequency of eco-

nomic response variables. Although high-frequency observables may be susceptible to measurement

noise because they are only proxies of their lower frequency official counterparts, frameworks like our

state space model allow for measurement error. We thus argue that measurement noise is not necessarily

more important than the bias induced by temporal aggregation.

1.1 CONNECTION TO LITERATURE While Campbell et al. (2012) and Nakamura and Steinsson (2018a)

find adverse responses when estimating the transmission of high-frequency monetary policy shocks to

lower frequency forecasts of macroeconomic aggregates, subsequent work finds that properly account-

2Lewis et al. (2020a) discuss how time aggregation affects their estimates of monetary policy transmission to household
expectations. See Shapiro et al. (2022), Aruoba et al. (2009), Lewis et al. (2020b) for other high frequency economic indicators.

3See Golez and Matthies (2021), Andrade and Ferroni (2021), Nakamura and Steinsson (2018a), Bauer and Swanson (2022),
Gürkaynak et al. (2022), and Gürkaynak et al. (2021).

4For example, Stock and Watson (2007) note that time series estimates of the CPI are susceptible to temporal aggregation
bias.
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ing for information delivers results that are either ambiguous or in line with structural predictions.5

Closest to our specification of high-frequency inflation indicators responding to high-frequency mon-

etary policy shocks are specifications that rely on high-frequency expected inflation (TIPS) [Nakamura

and Steinsson (2018a)] or commodity prices [Velde (2009)]. Relative to these previously used proxies,

we argue that the Billion Prices Project daily CPI is a relatively more complete measure of inflation and

hence better suited to assess the transmission of monetary policy shocks. Expected and realized infla-

tion may have different sensitivities to monetary policy shocks because the former tends to be anchored

while the latter is more prone to fluctuations.6 Similarly, commodities are known to be more volatile

than measures of inflation which may result in different sensitivities to monetary policy shocks.

Rather than following much of the empirical monetary policy transmission literature and focusing on

information refinements to possible explanatory variables, we instead follow Bauer and Swanson (2023)

and contribute refinements to the less-studied measurement of response variables.7 Many studies find

predictability and or bias in standard high-frequency monetary policy shocks such as those estimated by

Nakamura and Steinsson (2018a). These studies mainly focus on the response of GDP and argue that the

adverse sign disappears once the shocks are either orthogonalized [Karnaukh and Vokata (2022), Bauer

and Swanson (2022)] or conditioned on missing information [Caldara and Herbst (2019), Sastry (2021),

Miranda-Agrippino and Ricco (2021), Bauer and Swanson (2023)].

Many studies account for the adverse transmission of high-frequency monetary policy shocks by

appealing to Romer and Romer’s (2000) “Fed information effect” which argues that central banks have

an information advantage over private agents.8 Private agents thus revise up their forecasts of inflation

in response to tighter monetary policy because they perceive a signal that the central bank has relatively

optimistic non-public information. However, several recent papers explicitly test for a central bank infor-

mation advantage and find no evidence [Sastry (2021), Bundick and Smith (2020) and Bauer and Swan-

son (2023)]. Other papers take the information advantage as given, control for it directly, and find that

it either changes the transmission of monetary policy shocks [Lunsford (2020), Bu et al. (2021), Hoesch

et al. (2021), Cieslak and Schrimpf (2019), Acosta (2022)] or eliminates the adverse transmission entirely

[Miranda-Agrippino and Ricco (2021), Jarocinski and Karadi (2020)].9 In contrast to existing work, we do

not explicitly test or model how the information sets of central banks and private agents affect monetary

policy transmission. We instead focus on the less-studied information mismatch between private agents

and the econometrician and how this biases estimates.

Decades of work supports our claim that temporal aggregation bias can affect both the direction and

5Uribe (2022) takes a contrasting stance and argues that monetary policy shocks may actually be neo-Fisherian.
6Common specifications that rely on the change in Blue Chip forecasts may thus be understating the transmission of mone-

tary policy shocks to inflation because they capture changes in expected rather than current inflation. We posit that the different
sensitivities of expectations and actual indicators is less of an issue for the transmission of monetary policy shocks to GDP.

7Bauer and Swanson’s (2023) survey finds that Blue Chip forecasters rarely change their estimates of economic indicators
in response to monetary policy announcements which calls for reexamination of the suitability of these forecasts as response
variables.

8Faust et al. (2004) find that the adverse response of inflation disappears once the Volcker disinflation is excluded from
Romer and Romer’s (2000) study.

9Lewis (2020) and Acosta (2022) specifically identify a Fed information effect shock and find evidence that is either mixed or
against adverse transmission of monetary policy shocks.
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magnitude of monetary policy transmission. We follow Marcet (1991) in demonstrating how the system-

atic effect of time aggregation is to bias the first few coefficients of the moving-average representation.

Coupled with results in Amemiya and Wu (1972), who show that temporal aggregation of autoregressive

processes preserves invertibility, these biases would infiltrate modern approaches to VAR identification.

This puts our main result—that the Fed information effect is an artifact of temporal aggregation—on firm

theoretical ground. While applications of these ideas in applied macroeconomics are still relatively rare,

Foroni and Marcellino (2016) highlight how jointly using data collected at different frequencies can help

with the identification of structural VARs with a focus on traditional recursive identification schemes,

whereas Foroni and Marcellino (2014) make a similar argument for dynamic equilibrium models. A re-

lated, but distinct, literature has developed tools to estimate regression-type models when the left-hand

side is sampled at a different frequency than the right hand side (Ghysels et al., 2004).

2 A FEW PROPERTIES OF TEMPORAL AGGREGATION

We employ stylized models of monetary policy in order to establish properties of temporal aggregation

designed to shed light on the empirical results of Section 4. Using simulated data and local projections,

we show how a short-lived adverse response (i.e., positive response of inflation to a contractionary mon-

etary policy shock) can seep into lower frequencies due to temporal aggregation bias. We then provide

a more theoretical framework to demonstrate how temporal aggregation leads to substantial bias in im-

pulse response functions; specifically, in the initial values of moving-average representations. We keep

the models sufficiently simple in order to provide clear intuition, acknowledging that these are examples

as opposed to theorems. However, we conjecture robustness of our results by appealing to an earlier lit-

erature that operates in continuous time, and by discussing necessary conditions of our results in a New

Keynesian setup.

2.1 TEMPORAL AGGREGATION WITH LOCAL PROJECTIONS Consider the data-generating process of in-

flation,

πt =
59∑

j=0
Θ jε

mp
t− j +ut (1)

ut = ρuut−1 +εu
t

where t is assumed to be daily, and the monetary policy shock εmp
t ∼ N (0,1) is uncorrelated with the per-

sistent shock ut ∼ N (0,σ2
u). We assume the monetary policy shock occurs only once per month, while

ut occurs every day. We examine three alternative specifications of the timing of the monetary policy

shock—a shock that occurs at the beginning (day 1), middle (day 15), and end (day 30) of the month. To

approximate population moments, we simulate three million daily observations, taking 30-day averages

of shocks and the inflation process (1) to obtain corresponding monthly data. Local projections are used

to estimate monthly responses of inflation to the monetary policy shock, controlling for lagged infla-

tion outcomes. We set ρu = 0.99 and σu = 1 to capture the idea that other shocks are just as important

as monetary policy for the evolution of inflation at the daily frequency. The parameters governing the

4
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reaction of inflation to monetary policy are given byΘ j = 1 for j = 0, ...,9 andΘ j =−1 for j = 10, ...,59.

Our parameterization accomplishes two tasks: first, it introduces what we refer to as an initial “ad-

verse" policy response of inflation; that is, the first ten daily observations of inflation following a mone-

tary policy shock are inconsistent with standard theory in that a contractionary shock would lead to an

increase in inflation. Second, the average effect over the 30-day period is consistent with theory. The re-

maining two-thirds of the daily observations over the month enter with a negative coefficient, implying

a contractionary shock would lead to a fall in inflation. Note also that the magnitudes of the first 10 days

and last 20 days are similar. The implication of our calibration is that one would not expect the adverse

inflationary response to materialize in the aggregate (monthly) data.

Panel A: Beginning Panel B: Middle Panel C: End

ε
mp
t Πt−1 ε

mp
t−1 ε

mp
t Πt−1 ε

mp
t−1 ε

mp
t Πt−1 ε

mp
t−1

Πt -0.40 0.82 0.29 0.82 0.03 0.82
Πt -0.50 -1.16 0.38 -0.85 -0.06 -0.26
Πt+1 -1.09 0.61 -0.92 0.60 -0.19 0.60

Table 1: Local Projection Results. Three million observations of daily inflation simulated via (1) and
aggregated to monthly (30 day) frequency were estimated using local projections. The panels denote
when the monetary policy shock hits the economy, at the beginning (day 1), middle (day 15) or end (day
30) of the month. Dependent variables are in the first column, the other columns display the coefficients
of the right-hand-side variable given at the top of each column within a panel. The first row of the results
is the response of inflation to the monetary policy shocks from the current and previous months. The
second and third row of results are the local projections at time t = 0 and t = 1, respectively.

Table 1 shows results for three local projection specifications and various timing of the monetary

policy shock. In two of the three specifications, the econometrician would find a positive initial response

of inflation to a monthly monetary policy shock, despite the fact that the time-averaged response is

negative. Only when the monetary policy shock hits towards the beginning of the month does the sign

of the response of inflation match the temporally aggregated negative value. The lagged shock, ϵt−1,

does enter with a negative sign, so while the initial response could be adverse, the subsequent moves are

standard.

The timing of the monetary policy shock is important. Figure 1 (left panel) plots the time-aggregated

monthly moving average coefficients (i.e. the accumulated response to a monetary shock) (left, y-axis)

against the timing of the monetary policy shock (x-axis).10 The time-aggregated MA coefficients for any

month can be written as Ψ ≡ ∑29− j
t=0 (1t≤9 − 1t>9) where j = 0, ...,29 is the day of the month when the

monetary policy shock occurs. For example, when j = 29 so that the shock occurs on the last day of

the month, Ψ = 1. The aggregated response is thus initially increasing as we decrease j = 29, ...,21 (the

shock occurs earlier in the month) with the largest positive impactΨ= 10 on day j = 21. Thereafter, the

negative MA coefficients enter into the monthly aggregation and the largest negative impact Ψ=−10 is

when the shock occurs on day j = 0 at the very beginning of the month. The histogram plotted on the left

10Note that this accumulated response is not directly comparable to our estimates reported in table 1 since we assume in our
simulations that there is only one monetary shock per month.
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Figure 1: Robustness. Impact IRF estimated via local projections as a function of Autocorrelation (ρu)
and Standard Deviation (σu) (right panel) and accumulated responses as a function of shock timing (left
panel).

panel of Figure 1 shows that over our sample period, the timing of FOMC announcements is consistent

with the shock hitting during the middle of the month. The mean and median FOMC announcement

occurred on the 19th day of the month, and a majority of the announcements occured after the 10th day

of the month. This simple example shows how researchers using aggregated data can estimate a positive

response of inflation to a contractionary monetary policy shock even though most of the disaggregated

response coefficients are negative.

Finally, we note that the results are not contingent on the parameterization of the daily process, ut .

Figure 1 (right panel) plots the initial response using the middle of the month timing as in Panel B of

1 against the serial correlation coefficient and standard deviation. It shows that size of the positive co-

efficient in the LP regression is increasing in the correlation of the non-monetary policy shock and its

standard deviation, but remains substantial (0.13) when these values are close to zero. These results

confirm our empirical findings—a short-lived adverse response at daily frequency can be persistent and

significant at monthly frequency.

2.2 TEMPORAL AGGREGATION IN A STRUCTURAL MODEL. We now provide a more theoretical frame-

work to demonstrate how temporal aggregation leads to substantial bias in impulse response functions.

Consider a nominal bond that costs $1 at date t and pays off (1+ it ) at date t +1. The asset-pricing equa-

tion for this bond can be written in log-linearized form as a Fisher equation, it = r +E[πt+1|It ], where

the real interest rate is assumed to be constant and E[πt+1|It ] is the private agents’ expectation of next

period’s (t + 1) inflation. Monetary policy follows a Taylor rule, adjusting the nominal interest rate in

response to inflation, it = r +φ[πt |It ]+ xt , where the monetary policy shock follows an AR(1) process,

xt = ρxt−1+εt , with ρ ∈ (0,1) and εt distributed as Gaussian with mean zero and varianceσ2
ε. We assume

the information set of the monetary authority is consistent with private agents’ (It ) so that we can isolate

the effects of the information mismatch between private agents and the econometrician without a con-

founding “Fed information effect." The unique equilibrium rate of inflation is well known and follows

6
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m = 1 m = 2 m = 5 m = 10 m = 20 m = 30 m = 40 m = 50

ρm 0.990 0.980 0.951 0.904 0.818 0.740 0.669 0.605
θ 0.000 0.171 0.250 0.264 0.265 0.266 0.266 0.267
σ2

u 0.028 0.041 0.085 0.160 0.288 0.391 0.476 0.542
σ2
Π 1.397 1.389 1.374 1.351 1.307 1.266 1.226 1.186

Table 2: Estimates of the ARMA(1,1) (4) using temporally aggregated observations of (2). Note that for
m = 1 (no temporal aggregation), σ2

u =σ2
w .

from implementing the Taylor principle (φ> 1),

πt =− xt

φ−ρ = ρπt−1 +wt (2)

where wt =−εt /(φ−ρ).

We assume the econometrician observes realizations of the equilibrium processes at a frequency

that is lower than private agents. Specifically, let t = mT and define the temporally aggregated inflation

process as

ΠT =
(

1

m

)(
m−1∑
j=0

L j

)
πmT =

(
1

m

)
(πmT +πmT−1 +·· ·+πmT−m−1) T = 1,2,3, ... (3)

For example, if t is a month and m = 3, then T is a quarter. Inflation, πt , could be interpreted as a

monthly year-over-year percentage change, and the three-month non-overlapping arithmetic mean is

one possible way of aggregating. Alternatively, we could assume to observe month-over-month inflation

and the direct summation yields quarterly inflation. Our analysis below is robust to these alternative

aggregation methods.

Appendix C shows that temporally aggregating the AR(1) inflation process given by (2) yields an

ARMA(1,1) representation,

(1−ρmL)ΠT = uT +θuT−1 uT ∼ N (0,σ2
u) (4)

where, for lag operator L, the autocorrelation coefficient is raised to the power of m (the number of aggre-

gate components), and the estimated shocks (ut ) will be fundamental for the Πt process (Amemiya and

Wu (1972)). The last fact ensures that an autoregressive (or VAR) representation will accurately estimate

the ARMA process. An analytical mapping between the aggregated inflation process and the ARMA(1,1)

parameters is not feasible but Table 2 provides estimates of the parameters for various values of m using

simulated data. We set ρ = 0.99, φ= 1.05, σ2
ε = 0.01, and use one million disaggregated observations.

The estimates of Table 2 reveal important properties of the mapping between an AR(1) process and its

temporally aggregated ARMA(1,1) counterpart: [i.] the autocorrelation coefficient decays exponentially

7
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Figure 2: Initial Impulse Response and Moving-Average Filter for Various m. Panel a shows the decline
in the initial impact coefficient as m increases from 1 to 30. Panel b plots the spectrum for m = 2 (blue)
through m = 30 (green), demonstrating why low frequency properties are preserved.

at rate m; [ii.] the variance of the aggregate inflation process,

σ2
Π = σ2

π

m2

(
m +2[(m −1)ρ+ (m −2)ρ2 +·· ·+ρm−1]

)
(5)

declines multiplicatively in m (see Appendix C for derivation). Taken together, [i] and [ii] imply that the

variance of the innovation process σ2
u and the moving average parameter θ must compensate for the

faster decline in the autocorrelation coefficient, ρm . Table 2 shows that the variance of the innovation

(σ2
u) increases 46% for m = 2 and by a factor of ten for m = 20, and the moving-average parameter also

increases with m. The increase in the estimated variance will translate into a more pronounced initial

impact of the impulse response of inflation to a monetary policy shock. Figure 2a plots the initial impulse

response to a one-standard deviation shock (σu) for various levels of aggregation. Note that the units of

the x-axis correspond to the degree of aggregation m. The disaggregated impulse (m = 1) shows an infla-

tion process with an impact response that is substantially mitigated relative to the temporally aggregated

responses. Even a slight increase in the degree of aggregation leads to a substantial change in the impact

response to a monetary policy shock—temoporally aggregating over six periods more than doubles the

initial impact. This dynamic is consistent with our empirical findings in Section 4, see Figures 6 and 7.11

Figure 2b plots the moving-average filter
( 1

m

)(∑m−1
j=0 L j

)
in the frequency domain over the range of

0 to π. The figure shows that a MA filter is a low-pass filter, allowing lower frequencies to pass through

while attenuating medium and higher frequencies. What is critical for understanding the bias associated

with temporal aggregation is how the reallocation of the spectrum is distributed across various param-

11One distinction between this exercise and our empirics is the normalization of the variance. If one were to normalize the
variance for the temporally aggregated series to match the disaggregated value, the correction would come through the moving
average term and Figure 2 continues to be relevant.

8
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eters of the estimated ARMA(1,1) process. Lower frequencies are preserved when aggregation occurs

despite the decline in the autocorrelation coefficient (from ρ to ρm). Amemiya and Wu (1972) show that,

for any stationary AR(p) representation, temporal aggregation preserves the order of the autoregressive

process (i.e., an AR(p) becomes an ARMA(p,q))12 with the autoregressive roots all raised to the power

m. These seemingly conflicting properties—a decline in the value of the (positive) autocorrelation roots

coupled with no subsequent change in the low frequency properties of the time series process—leads to

a substantial change in the initial impulse response coefficients through an increase in the variance of

the innovation process and appearance of positive moving-average parameters.

2.3 ROBUSTNESS The purpose of this section was to establish how temporal aggregation can sub-

stantially alter initial moving-average coeffcients. An econometrician, time-aggregating the data, will

attribute a structural interpretation to the significant and potentially adverse initial reaction of inflation

to a monetary policy shock, when the lion’s share of the response is due to temporal aggregation bias.

While we believe this section has established compelling intuition for our results, the models are stylized

and so we briefly discuss robustness. First, appealing to Marcet (1991), our primary result is not an arti-

fact of specific assumptions underlying our model but is due to the more generic properties of temporal

aggregation. Working in a continuous-time framework and with generic Wold representations, Marcet

(1991) finds the “systematic effect of time aggregation is to increase the absolute size of the first few coeffi-

cients of the MAR (moving-average representation) (emphasis added).” This result, coupled with the fact

that temporal aggregation preserves invertibility for autoregressive processes (Amemiya and Wu (1972)),

suggests that our results are robust to alternative specifications.

Second, how do we square our results with the ubiquitous price-stickiness frictions now standard in

the New Keynesian literature? Our result will continue to go through under the assumption that some

firms have the ability to adjust prices at a frequency higher than monthly. Building a New Keynesian

model with multiple Calvo adjustment frequencies, we can show that temporal aggregation bias will be

substantial if only 1/5 of firms change prices at frequencies higher than monthly.13 Observing data at a

monthly or quarterly frequency, the econometrician will be susceptible to temporal aggregation bias.

3 DATA

Our analysis uses the Billion Prices Project Daily CPI (BPP). Several papers have already established the

ability of the BPP to improve forecasts of the CPI [Cavallo and Rigobon (2016), Aparicio and Bertolotto

(2020) and Harchaoui and Janssen (2018)]. We also refer readers to these papers for a detailed discussion

of BPP construction. Our analysis below confirms that the BPP contains additional information that

helps forecast the CPI over our sample period.

12Stram and Wei (1986) show this condition holds as long as the AR roots are distinct from the MA roots.
13Results available upon request.
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3.1 DAILY INFLATION DATA We define daily inflation as the 30-day percentage change in the BPP.14

The BPP is constructed from over five million online prices from 300 retailers in 50 countries webscraped

daily. While we provide a brief overview here, a meticulous description of the data is provided in Cavallo

and Rigobon (2016). Our data consists of (publicly available) observations from 2008 to 2015. Advantages

of the data are [i.] the higher frequency (daily) vis-a-vis the CPI (monthly or bi-monthly) or scanner data

(weekly); and [ii.] the number of prices collected far exceeds the CPI (500k vs. 80k). The disadvantages

are [i.] prices are only collected from online retailers and therefore the sample is not representative of

all consumer prices; specifically, the sample contains no pricing from the services sector.15 According

to Cavallo and Rigobon (2016), the data contain at least 70 percent of the weights in Consumer Price

Index (CPI) baskets of roughly 25 countries; [ii.] Because prices are webscraped, the data does not con-

tain information on quantities sold. Thus, online prices must be coupled with weights from consumer

expenditure surveys or other sources to yield expenditure-weighted data.16 Even though prices obtained

by physically visiting stores may not necessarily coincide with those observed online, Cavallo (2017) finds

a 70 percent match rate.

3.2 CONNECTION TO CPI INFLATION To alleviate concerns that BPP data may not align well with the

US CPI, we now conduct several tests to show that the BPP is effective at anticipating changes in inflation,

a fact that we will exploit in our econometric analysis.

Statistic Release delay (days)

Mean 16.97
Standard error 2.73
Min 13
Max 30

Table 3: Summary statistics on CPI release delays from July 2008 to August 2015.

Panel 3a plots the percentage change of the monthly CPI and the BPP daily index; Panel 3b plots the

percentage change of the monthly CPI against the aggregated monthly BPP. While the correlation of the

two series plotted in Panel 3b is only 0.64, several studies have shown that the BPP index is particularly

adept at picking up turning points in the CPI, which leads to improved forecasts [Cavallo and Rigobon

(2016), Aparicio and Bertolotto (2020) and Harchaoui and Janssen (2018)]. To show this result holds over

our sample period, we use the monthly aggregated BPP series to conduct a Nowcast of the CPI by estimat-

ing,∆C PIT =β0+β1∆BPPT +eT . Despite both indices being denoted with subscript T , the CPI at date T

is announced with a slight delay as shown by Table 3, which documents the summary statistics of release

14In contrast to day-over-day percentage, 30-day percentage change allows for the units of daily inflation to be comparable
to those of official inflation which are measured at monthly frequency.

15Although comparing the BPP to a version of the CPI with the same coverage of categories would be an ideal exercise, we
are limited by data availability. We have instead repeated some of the calculations of this section using sub-categories of the
CPI and the results are broadly similar as shown in Appendix A. These sub-categories include the commodity price index, the
commodity plus shelter index, the official index less energy, and the official index less medical services.

16The BPP only discloses weights pooled across all countries where they collect data. They do not disclose country specific
weights. See https://www.pricestats.com/approach/data-composition.
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Figure 3: Official and daily inflation, monthly and 30-day percentage change. For month T , ∆C PIT =
100× (logC PIT − logC PIT−1) and for day t , ∆BPPt = 100× (logBPPt − logBPPt−30) so that ∆BPPT =
1
m

∑m
t=1 100× (logBPPt − logBPPt−30) for t = 1, . . . ,m days in month T .

delays in days (e.g., June 2008 CPI was released July 16). Given that our interest lies in high-frequency

changes in inflation, the slight difference in timing is relevant as one can use the monthly average of the

BPP to predict that month’s CPI number. A coefficient equal to unity (β1 = 1) suggests the BPP perfectly

predicts the CPI. The estimated value is 0.94 with an R-squared of 0.58, implying substantial predictive

power, see Panel 4b. Panel 4a plots the in-sample predicted values against the realized values.

Given the persistence of inflation, we address the following question: Is there any additional predic-

tive power of the BPP beyond that contained in past values of the CPI? Table 4 compares the Nowcast to

an autoregressive representation of the CPI. Column one reports the AR(1) specification results. Columns

two and three condition only on past values of the BPP, and show a substantial increase in the R-squared

value when conditioning on the contemporaneous BPP, while the lagged BPP has less predictive con-

tent than last month’s CPI. Columns four and five demonstrate an affirmative answer to the question of

additional predictive power of the BPP: The coefficients on the contemporaneous BPP are positive and

statistically significant. The R-squared value is twice as high as the autoregressive specification.17

4 EMPIRICAL RESULTS

4.1 MEASURES OF HIGH-FREQUENCY MONETARY POLICY SHOCKS Before estimating monetary policy

transmission with disaggregated inflation data, we briefly describe our choice of monetary policy shocks

and their respective timing and identification. We discuss two such constructions in detail—Nakamura

17We conduct several robustness checks in Appendix A which corroborate our findings that the BPP index is effective at
predicting changes in inflation. For example, we construct alternative metrics for computing inflation (levels, end-of-month
values) and examine different types of seasonality (day-of-the-week).
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Figure 4: Nowcast of CPI using monthly aggregated BPP, monthly percentage change. Standard errors in
parentheses on Panel 4b. For month T , ∆C PIT = 100× (logC PIT − logC PIT−1) and for day t and month
T , ∆BPPT = 1

m

∑m
t=1 100× (logBPPt − logBPPt−30) for t = 1, . . . ,m days in month T .

∆C PIT

(1) (2) (3) (4) (5)

∆C PIT−1 0.558∗∗∗ 0.178
(0.143) (0.107)

∆BPPT 0.937∗∗∗ 0.878∗∗∗ 0.828∗∗∗
(0.129) (0.097) (0.106)

∆BPPT−1 0.591∗∗ 0.109 −0.03
(0.248) (0.193) (0.222)

R2 0.32 0.58 0.23 0.59 0.61
Adj. R2 0.31 0.58 0.22 0.58 0.6

Standard errors in parentheses. ∗(p < .10), ∗∗(p < .05), ∗∗∗(p < .01)

Table 4: Nowcast of BPP vs. autoregressive CPI. For month T ,∆C PIT = 100×(logC PIT −logC PIT−1) and
for day t and month T ,∆BPPT = 1

m

∑m
t=1 100×(logBPPt − logBPPt−30) for t = 1, . . . ,m days in month T .

and Steinsson (2018a) (NS) and Bu et al. (2021) (BRW). We focus on these shocks because they are char-

acterized by a single factor that can be parsimoniously embedded into more complex frameworks like

our state space model. Even though the NS shock is widely used, there are known concerns about pre-

dictability and bias. For this reason, we also include estimates using the BRW shock as it claims to control

for some of these concerns. NS find a substantial adverse transmission of monetary policy shocks, while

BRW claim to overcome such dynamics. Our aggregated results replicate these findings.

NS define a “policy news shock” as the first principal component of the change in five interest rates

/ futures around a 30-minute window of FOMC announcements: the expected federal funds rate at the

end of the month of the FOMC announcement, the expected federal funds rate at the end of the month

12
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of the next scheduled FOMC announcement, and expected 3-month Eurodollar interest rates at hori-

zons of two, three and four quarters. The last three futures are meant to capture the effects of forward

guidance as it impacts expectations beyond the federal funds rate. Our extension of this shock series

is constructed from the Chicago Mercantile Exchange futures tick data to assure as close of a match as

possible to the original series. BRW use the Fama and MacBeth (1973) two-step procedure to extract un-

observed monetary policy shocks from the common component of zero-coupon yields encompassing

the full yield curve. The first step in the procedure estimates the sensitivity of yields of different matu-

rity to monetary policy via standard time-series regressions. Filtering out non-monetary policy news is

done through the heteroskedasticity-based estimator of Rigobon (2003) and Rigobon and Sack (2004),

implemented by employing instrumental variables (IV).

2009 2010 2011 2012 2013 2014 2015
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Nakamura-Steinsson
Bu-Rogers-Wu

Figure 5: Extracted shock series from Nakamura and Steinsson (2018a) and Bu et al. (2021). The shocks
are scaled so that their effects equal unity on nominal Treasury yields of tenures equal to one year (NS)
and two years (BRW).

Figure 5 plots the extracted shock series for each approach over our sample period. As noted in BRW,

their shock series has “moderately high correlation" with that of NS in addition to those of Swanson

(2021) and Jarocinski and Karadi (2020). What is evident from the figure is that the BRW shock series has

much more dispersion which is likely attributed to the different frequencies, methods, tenures, and asset

prices used in the construction. Despite these differences in dispersion, our empirical analysis confirms

that temporal aggregation exacerbates initial impulse responses for both shock series.
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Figure 6: Impulse response of daily inflation (30-day percentage change) to a one standard deviation
Nakamura and Steinsson (2018a) shock: aggregated vs disaggregated. For a given month, the aggre-
gated series are the sum of the monetary policy shocks and the average of 30-day annualized percentage
change of daily inflation, BPPT = 1200

m

∑m
t=1(logBPPt − logBPPt−30) for days t = 1, . . . ,m of month T .

4.2 LOCAL PROJECTIONS We employ local projections using the methodology of Canova and Ferroni

(2022) to estimate the impulse responses of disaggregated and aggregated inflation. Let yt+h be the value

of daily inflation over the past 30 days at day t+h, xt−1 be the monetary policy shock, and zt be the vector

of controls which are the 30 lags of daily inflation. Given the model,

yt+h =α(h) +β(h)xt−1 +Γ(h)zt +e(h)
t , e(h)

t ∼ N (0,σ(h))

estimates are computed via instrumental variables with robust heteroskedasticity and autocorrelation

consistent (HAC) standard errors. We report 90% confidence bands and examine the response of infla-

tion observed at various frequencies. We normalize the shock series to have unit variance.

Figure 6 plots the impulse response to a one-time contractionary NS monetary policy shock at both

the daily and monthly frequency. Panel 6a shows median disaggregated daily inflation responds posi-

tively initially; however, the 90% confidence interval substantially overlaps zero for periods zero through

33. After roughly 30 periods (one month), the inflation response turns negative and is significantly so for

the remaining periods shown. By itself this impulse response is merely suggestive. At a daily frequency,

the NS shock sequence does not produce a substantial and long-lasting positive response of inflation to a

contractionary monetary policy shock. The magnitude of the initial positive response is roughly half that

of the negative (and much more persistent) response. Since the NS monetary policy shock is associated

with initially adverse responses, feeding in this sequence gives us the best chance of recovering one. At

daily frequency, such a response materializes only temporarily.
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Figure 7: Impulse response of daily inflation (30-day percentage change) to a one standard deviation Bu
et al. (2021) shock: aggregated vs disaggregated. For a given month, the aggregated series are the sum of
the monetary policy shocks and the average of 30-day annualized percentage change of daily inflation,
BPPT = 1200

m

∑m
t=1(logBPPt − logBPPt−30) for days t = 1, . . . ,m of month T .

Panel 6b aggregates the daily index to a monthly frequency.18 The adverse response emerges. When

aggregated, the data suggest the initial adverse response is quantitatively large and one of the few com-

ponents of the impulse response function for which the confidence band does not cover zero. In con-

trast, the disaggregated initial response of the daily frequency was dominated by the larger and more

significant negative response of the later time periods. Figure 6b behooves researchers to provide an ex-

planation for this adverse response when in fact it is not the prominent feature of the data at a slightly

higher frequency. Our modeling results in section 2 can reconcile these discrepancies in the estimated

adverse response via substantially altered moving-average coefficients due to temporal aggregation bias.

One explanation is that monetary policy announcements contain novel information about economic

fundamentals and private agents are reacting to this news.19 What we refer to as an “adverse" shock or

one that runs counter to standard theory could be explained by introducing a discrepancy in informa-

tion between the Federal Reserve and private agents, Nakamura and Steinsson (2018a). However, testing

for this effect requires high frequency data. Previous studies [e.g., Jarocinski and Karadi (2020), Lunsford

(2020)] examined the reaction of asset prices, such as stocks and bonds, but we are the first to study

the most intriguing economic fundamental—inflation—at high frequency. Figure 6 definitively demon-

strates that the adverse response to inflation could be due to an information discrepancy between the

econometrician and private agents, and not just the Federal Reserve and private agents.

Figure 7 plots the impulse response of inflation to a contractionary BRW monetary policy shock.

18We average the daily shocks for each month and then normalize the resulting shock to have unit variance.
19Romer and Romer (2000), Campbell et al. (2012, 2017), Nakamura and Steinsson (2018a), Jarocinski and Karadi (2020),

Miranda-Agrippino and Ricco (2021), Lunsford (2020), Hoesch et al. (2021), Cieslak and Schrimpf (2019), Acosta (2022), Lewis
(2020), Bundick and Smith (2020), Andrade and Ferroni (2021), Golez and Matthies (2021).
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Panel 7a shows that, at daily frequency, the median response of inflation is close to zero or slightly nega-

tive until about period 60 (two months) when it becomes more negative and on the margin of the confi-

dence bands. In contrast, when the daily index is aggregated to a monthly frequency, the point estimate

of the impact response is positive, albeit zero is well contained in the 90% credible sets. The results using

BRW shocks are not surprising given that the “information effect" is not a feature of the shock series.

Indeed, the primary takeaway of Bu et al. (2021) is that the long-end of the yield curve is necessary to

eliminate the information effect:

Whereas alternative measures are constructed from only short rates, we use the entire yield

curve. This is important because we find that the Fed information effect is essentially non-

existent in maturities of five years and longer.

While we certainly agree that there could be additional information in interest rates of duration

longer than two years, it is not clear that this additional data is the sole reason for eliminating the Fed

information effect, especially when the methodologies generating the shock sequences are drastically

different. From a theoretical perspective, one would have to assume that FOMC announcements con-

tain substantial information about economic fundamentals at horizons longer than two years and that

this horizon is most relevant for explaining impact impulse responses, which seems highly unlikely. We

instead take the same shock sequence and temporally aggregate the same inflation data to construct

alternative impulse response functions. The adverse response, often attributed to the “Fed informa-

tion effect", is absent at higher frequencies because the mismatch between econometrician and private

agents is eliminated. Temporal aggregation bias explains this response at lower frequencies, as opposed

to an informational discrepancy between policy makers and private agents.

4.3 UNOBSERVED COMPONENTS MODEL To study the response of high-frequency inflation to a mone-

tary policy shock more systematically, we now introduce an unobserved components model. We employ

this methodology for several reasons. First, the permanent-transitory decompositions cast in state space

form have proven very useful for inflation at lower frequencies [Stock and Watson (2020)]. Second, there

is transparency in modeling assumptions. Relative to the local projections methodology, which relies

on IV and HAC errors, the modeling assumptions here are more straightforward. This allows us to take

a more definitive stance on our finding of a conventionally-signed transmission of monetary policy, as

opposed to disentangling how temporal aggregation might interact with, say, our IV estimation. Third

and relatedly, the model specification is parsimonious. Finally and most importantly, the state space

/ estimation methodologies allow us to more easily handle data observed at different frequencies and

with observations missing at different dates—we use daily inflation data, data on break-even inflation

rates that is available daily except for holidays and weekends, infrequent monetary policy shocks, and

monthly inflation rates. Furthermore, the unobserved components approach allows us to explicitly take

into account the exact timing of monetary policy shocks and releases of official inflation releases within

a month.

Our model consists of the following state equations: [i.] Unobserved daily CPI inflation, πt = τt +g t +
eπt , broken down into a permanent component τ, a transitory component g , and i.i.d. shock eπ. The per-
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# Parameter Prior Notes

1 σπ Γ(1,0.5) standard deviation of i.i.d. component of underlying inflation
2 στ Γ(1,0.5) standard deviation of innovation to random walk permanent component
3 ρg β(4,4) persistence of stationary part
4 σg Γ(1,0.5) standard deviation of innovation to stationary part
5 αm N (0,0.00012) intercept of measurement equation of monthly CPI inflation
6 σmonthl y Γ(1,0.5) standard deviation of measurement error of monthly CPI inflation
7 αd ai l y N (0,52) intercept of measurement equation of daily (30-day) inflation
8 σd ai l y Γ(1,0.5) standard deviation of measurement error of daily inflation
9 αBE N (0,52) intercept of measurement equation of daily BE inflation
10 σBE Γ(1,0.5) standard deviation of measurement error of daily BE inflation
11 θ

g
0 N (0,0.252) contemporaneous impact of monetary shock on g

12 θτ0 N (0,0.252) contemporaneous impact of monetary shock on τ

13 σm,obs Γ(1,0.5) standard deviation of monetary shock
14 ∼ 72 θ

g
i

59×1
N (0, (0.25∗0.95i )2) vector of effects of 59 days lagged monetary shocks on g

73 ∼ 131 θτi
59×1

N (0, (0.25∗0.95i )2) vector of effects of 59 days lagged monetary shocks on τ

Table 5: Prior Specification

manent and transitory components follow, τt = τt−1 +∑K
k=0θ

τ
k mt−k +eτt and g t = ρg t−1 +∑J

j=0θ j mt− j +
eg

t , respectively.20 The permanent component of inflation allows for a unit-root specification and a se-

quence of monetary policy shocks for 60 periods (K = J = 60). The transitory component permits auto-

correlation and the same number of monetary policy shocks. We assume monetary shock dynamics

mt = em
t with all shocks e being i.i.d. and Gaussian. The observation equations are the monthly ob-

servation of CPI (real-time vintages): πm
t = αm +πt−p + emonthl y

t , where p is publication lag mentioned

in Section 3 (which can vary over time as shown in Table 3). At higher frequencies, we use the daily

measure of monthly (30-day) inflation: πd ai l y
t = αd ai l y +πt + ed ai l y

t , and the 10-year break-even rates:

πBE ,h
t =αBE +Etπt ,t+h+eBE

t . We assume that the monetary policy surprise is a noisy measurement of the

true monetary policy shock: mobs
t = mt + em,obs

t , along the lines of Caldara and Herbst (2019). Note that

the model implies Etπt+h = Et (τt+h + g t+h) = τt +ρh g t ≈ τt , where the last approximation is imposed

on the estimation procedure (our prior imposes that the daily persistence of the transitory component

|ρ| < 1, and h represents the 10 year horizon).

The estimation is Bayesian with the likelihood function evaluated using the Kalman filter. To ef-

fectively explore the posterior distribution, a sequential Monte Carlo algorithm is implemented [Herbst

and Schorfheide (2016)]. We use 15,000 particles with 200 steps to go from the prior to the full posterior

and five Metropolis Hastings steps per iteration of the algorithm. Table 5 reports our prior distributions,

which are largely uninformative. The one are where we impose somewhat informative priors are the

effects of monetary policy shocks on the transitory and permanent components of inflation. We center

those priors at 0 to not bias our results for or against finding adverse effects, but we do impose shrinkage

20In contrast to previous work using state space models to describe inflation dynamics, we explicitly incorporate a role for
monetary policy shocks. We allow these shocks (which are measured with error) to affect both transitory and permanent com-
ponents of inflation. This is important because movements in inflation that might seem permanent at the daily frequency can
correspond to persistent, but non-permanent components at a lower frequency.
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Figure 8: Impulse responses to a one standard deviation Nakamura and Steinsson (2018a) shock . Error
bands are 68 % and 90 % posterior bands centered at the median.

- the further a monetary policy shock is in the past, the more we shrink its effect towards zero. In the

Appendix we show that our findings are robust to imposing less shrinkage.

Panel 8a plots the overall impulse response function of inflation to a contractionary NS monetary

policy shock, while Panels 8b-8c plot the response of the transitory and permanent components, re-

spectively.21 Darker shaded error bands are 68th percentiles, while lighter shades are 90th. The initial

observation is that inflation—at a daily frequency—does not contain an adverse response. The initial

reaction of inflation to a one standard deviation monetary policy shock is negative, even at the 90th per-

centile, followed by an increase and an error band that contains zero over the remaining horizon. The

permanent component response of Panel 8c shows that the standard and theory-consistent response of

inflation is present in our daily data. These results further corroborate our findings from the local pro-

jections; namely, that the positive reaction of inflation to a monetary policy shock is difficult to detect at

the daily frequency. By decomposing into permanent and transitory components, we are able to parse

the conventionally signed impulse response as permanent. Most importantly, the transitory response is

shown to be quantitatively small relative to trend.22

21Results are similar for the BRW shock series and are available upon request.
22Appendix B shows that our results are robust to less shrinkage of the estimators. In fact, the permanent component shows

a more substantial conventionally signed response at longer horizons in that case.
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The variance decomposition, plotted in Figure 9, shows that the lion’s share of volatility is explained

by the permanent component of inflation as opposed to the transitory component. Taken together, these

figures suggest that methodologies that de-trend inflation prior to analysis could miss conventionally

signed responses. More germane to our argument, the transitory component when evaluated at daily

frequencies does not display a substantial adverse response despite the fact that the shocks fed into the

system generate substantial adverse responses at much lower (monthly) frequencies.
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Figure 9: Variance Decomposition associated with Monetary Policy Shock as a fraction of total variance.

5 CONCLUDING THOUGHTS

This paper revisits a fundamental question of monetary economics: What is the transmission of mon-

etary policy to the economy? We introduce temporal aggregation bias as a new information-based ex-

planation for the adverse transmission of monetary policy shocks. When using the daily CPI from the

Billion Prices Project as a temporally disaggregated macroeconomic indicator, we find a conventionally-

signed response with only a short-lived adverse sign when present at all. To understand how one can

obtain a sizable adverse response to monetary policy shocks with monthly or quarterly data when only

a limited adverse response actually exists, we combine a simple model of temporal aggregation bias
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with informal and formal empirical evidence. Because our temporal aggregation results are generic, and

macroeconomic indicators are published with a lag, we argue that temporal aggregation bias is not lim-

ited to our study of monetary policy transmission and will likely be a key feature of the nascent field of

high-frequency macro.
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A APPENDIX: BPP ROBUSTNESS CHECKS

A.1 ALTERNATIVE CONSTRUCTIONS OF BPP INFLATION This section shows an alternative version of

figure 4.
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Figure 10: Nowcast of CPI using end of month values of the BPP, monthly and 30-day percentage change.
For month T , ∆C PIT = 100 × (logC PIT − logC PIT−1) and for day m of of month T , ∆BPPT = 100 ×
(logBPPm − logBPPm−30).
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Figure 11: Nowcast of CPI using aggregated monthly values of the BPP, index. For month T , C PIT =
logC PIT and for day t of month T , ∆BPPT =∑m

t=1 logBPPt for t = 1, . . .m days in month T .
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A.2 CPI SUB-CATEGORIES Table 6 shows how the BPP Nowcast of the headline CPI compares to other

CPI sub-categories.

∆C PI i
T , various CPI Sub-categories, i

(1) (2) (3) (4) (5)

Headline Commodities
Commodities

& Shelter
Headline
ex energy

Headline
ex Medical

∆BPPT 0.937∗∗∗ 1.618∗∗∗ 0.53∗∗∗ 0.18∗∗∗ 1.001∗∗∗

(0.129) (0.283) (0.121) (0.052) (0.137)

R2 0.58 0.48 0.36 0.21 0.59
Adj. R2 0.58 0.47 0.36 0.2 0.58

Standard errors in parentheses. ∗(p < .10), ∗∗(p < .05), ∗∗∗(p < .01)

Table 6: Nowcast of CPI sub-categories using the BPP. For month T and sub-category i , ∆C PI i
T = 100×

(logC PI i
T − logC PI i

T−1) and for day t and month T , ∆BPPT = 1
m

∑m
t=1 100× (logBPPt − logBPPt−30) for

t = 1, . . . ,m days in month T .

A.3 SEASONALITY

BPPt = tr endt +
∑

j
α

d ay
j 1d ay o f week +ϵt

Sunday

Monday
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Friday
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96.7 96.8 96.9 97

Figure 12: Day of week effects of the Billion Prices Project daily inflation.
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B APPENDIX: IMPULSE RESPONSE FUNCTIONS WITH LESS SHRINKAGE

This Appendix shows the impulse responses from the state space model under the assumption of less

shrinkage - the prior standard deviation of lagged coefficients is now 0.25∗0.99i , where i is the lag.
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Figure 13: Impulse response of inflation (πt ) to a one standard deviation Nakamura and Steinsson
(2018a) monetary policy shock . Error bands are 68 % and 90 % posterior bands centered at the me-
dian.
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Figure 14: Impulse response of the transitory component of inflation (g t ) to a one standard deviation
Nakamura and Steinsson (2018a) monetary policy shock . Error bands are 68 % and 90 % posterior bands
centered at the median.
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Figure 15: Impulse response of the permanent component of inflation (τt ) to a one standard deviation
Nakamura and Steinsson (2018a) monetary policy shock . Error bands are 68 % and 90 % posterior bands
centered at the median.
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C APPENDIX: TEMPORAL AGGREGATION

Theorem 1. The temporally aggregated inflation process given by (3) and (2) satisfies the following two

properties:

1. The temporally aggregated inflation series,ΠT , follows an ARMA(1,1) process.

(1−ρmL)ΠT = uT +θuT−1 (6)

2. The innovation of the ARMA(1,1) process (6) is fundamental for the temporally aggregated inflation

sequence,ΠT .

This theorem is well known and dates back to at least to Amemiya and Wu (1972); thus, we do not

offer a complete proof but provide intuition and references. To understand part (1), let πt = ρπt−1 +wt ,

where wt is Gaussian with mean zero and variance σ2
w =σ2

ε/(φ−ρ)2, and note

γ(0) = Var(ΠT ) = σ2
π

m2

(
m +2[(m −1)ρ+ (m −2)ρ2 +·· ·+ρm−1]

)
(7)

γ(s) = Cov(Πt ,Πt−s) = σ2
π

m2ρ
m(|s|−1)+1(1+ρ+ρ2 +·· ·+ρm−1)2 s ̸= 0 (8)

γ(s) = ρmγ(s −1) |s| ≥ 2 (9)

where σ2
π = σ2

w /(1−ρ2), see Wei and Ahsanullah (1984). The intuition of (7)–(8) comes from the corre-

lation structure of an autoregressive process, where all elements are multiplied by
σ2
π

m2
. Thus, there are

(m−1) “neighbors", (m−2) elements two periods removed, etc. Given the strength of the autocorrelation

of many macro aggregates, the following limits are useful. As ρ→ 1, the term in brackets in (7) converges

to m(m − 1)/2 and therefore, Var(ΠT ) → σ2
π and Var(ΠT ) ∈ (0,σ2

π). Further, the parenthetic term in (8)

converges to m as ρ→ 1, and Cov(Πt ,Πt+s) →σ2
π.

πt πt−1 πt−2 · · · πt−m

πt 1 ρ ρ2 · · · ρm−1

πt−1 ρ 1 ρ · · · ρm−2

πt−2 ρ2 ρ 1 · · · ρm−3

...
πt−m ρm−1 ρm−2 ρm−3 · · · 1

The covariance difference equation (9) identifies the autocorrelation coefficient of theΠT process as

ρm . We can then multiply [(1−ρmL)/(1−ρL)]
∑m−1

j=0 L j to both sides of πt to give,

(
(1−ρL)(1−ρmL)

∑m−1
j=0 L j

1−ρL

)
πt =

(
(1−ρmL)

∑m−1
j=0 L j

1−ρL

)
wt

(1−ρmL)ΠT =
m−1∑
j=0

(ρL) j wt = uT +θuT−1 (10)
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where uT ∼ N (0,σ2
u). The errors defined by the the m moving-average terms

∑m−1
j=0 (ρL) j wt are correlated

and therefore cannot be used to obtain the Wold innovations associated with predictingΠT linearly from

its past. Theorem 1 of Amemiya and Wu (1972) proves that with m ≥ 2, then the moving-average terms

are at most of order one, which establishes the final equality.

The proof of Part 2 also relies on arguments in Amemiya and Wu (1972). In order for the process to be

fundamental, one must show that the roots of 1−θz lie outside of the unit circle (i.e., |θ| < 1). Given that

the initial AR(1) process is positive definite (ρ ∈ (0,1)), then it has a positive spectral density. As shown

in Amemiya and Wu (1972), temporal aggregate maintains the positive definite structure and hence the

roots of the moving-average representation must lie outside the unit circle.

C.1 MOVING-AVERAGE FILTERS Suppose we have a stationary stochastic process xt that is aggregated

according to

XT =
(

1

m

)(
m−1∑
j=0

L j

)
xmT =

(
1

m

)
(xmT +xmT−1 +·· ·+xmT−m−1) (11)

Note that 1+L+L2+·· ·+Lm−1 = (1−Lm)/(1−L). Thus, the covariance generating function of XT is related

to xt by

gX (z) = 1

m2

(
1− zm

1− z

)(
1− z−m

1− z−1

)
gx (z) (12)

In the frequency domain (z = e−iω),

gX (e−iω) = 1

m2

(
1−e−iωm

1−e−iω

)(
1−e iωm

1−e iω

)
gx (e−iω)

= 1

m2

(
1−cos(ωm)

1−cos(ω)

)
gx (e−iω) (13)

where (1 − e−iωm)(1 − e−iωm) = 2 − (e iωm + e−iωm) = 2 − 2cos(ωm) = 2(1 − cos(ωm)) because e iωm =
cos(ωm) + i sin(ωm) and e−iωm = cos(ωm) − i sin(ωm). Plotting this function over the range of [0,π]

gives Figure 2b.

29



JACOBSON, MATTHES & WALKER: TEMPORAL AGGREGATION BIAS

D APPENDIX: DATA

This section lists the source and description of each series used in this paper.

OFFICIAL CPI INDEX Analysis in section 3.2 use the BLS’ seasonally adjusted Consumer Price Index

(FRED: CPIAUCSL) at a monthly frequency. Results in section (4) use the seasonally adjusted (PCPI)

and not seasonally adjusted (CPIN) real-time Consumer Price Index which is accessed via the Real-time

Data Research Center at the Federal Reserve Bank of Philadelphia.23 In each real-time spreadsheet, the

columns are the date of the vintage and the rows are the time series for that vintage. We then construct a

time series by calculating the monthly percentage change for the last two entries for each vintage.

DAILY CPI The Billion Prices Project publicly available daily inflation index can be obtained via Cavallo

and Rigobon (2016) for July 2008 through August 2015.24 The index is obtained by webscraping prices

from multichannel retailers that sell both online and offline.

BREAK-EVEN INFLATION RATES 10-year spot breakeven inflation rates are the daily 10-year treasury

yield at constant maturity (FRED: BC_10YEAR) less the daily 10-year TIPS at constant maturity (FRED:

TC_10YEAR). These rates are obtained from the U.S. Treasury Department via FRED.

ZERO-COUPON TREASURY YIELDS Continuously compounded zero-coupon yields (mnemonic: SVENYXX)

are obtained via the Federal Reserve Board.25

NAKAMURA AND STEINSSON (2018A) MONETARY POLICY SHOCK High-frequency monetary policy shocks

are originally available from 1995 to 2014.26 We extend this shock series from 1994 to present using fu-

tures tick data accessed via CME Group Inc. DataMine (https://datamine.cmegroup.com/) at the Federal

Reserve Board.27 The construction of the shock series follows that of Gürkaynak et al. (2005) as described

in Nakamura and Steinsson (2018a) and relies on the changes in five short-term interest rate futures. Let

23We thank Tom Stark for help obtaining these series. https://www.philadelphiafed.org/surveys-and-data/real-time-data-
research/real-time-data-set-full-time-series-history

24Series indexCPI for country==USA in spreadsheet pricestats_bpp_arg_usa.csv in folder
all_files_in_csv_format.zip at website
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi%3A10.7910%2FDVN%2F6RQCRS. Alternatively, the
data are also available from the pricestats_bpp_ar_usa.dta file in the RAWDATA folder on the website
https://www.openicpsr.org/openicpsr/project/113968/version/V1/view.

25See https://www.federalreserve.gov/data/yield-curve-tables/feds200628_1.html or as a csv file.
26Series FFR_shock from the spreadsheet PolicyNewsShocksWeb.xlsx

https://eml.berkeley.edu/∼jsteinsson/papers/PolicyNewsShocksWeb.xlsx
27https://eml.berkeley.edu/∼jsteinsson/papers/realratesreplication.zip

30

https://datamine.cmegroup.com/
https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/real-time-data-set-full-time-series-history
https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/real-time-data-set-full-time-series-history
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi%3A10.7910%2FDVN%2F6RQCRS
https://www.openicpsr.org/openicpsr/project/113968/version/V1/view
https://www.federalreserve.gov/data/yield-curve-tables/feds200628_1.html
https://www.federalreserve.gov/data/yield-curve-tables/feds200628.csv
https://eml.berkeley.edu/~jsteinsson/papers/PolicyNewsShocksWeb.xlsx
https://eml.berkeley.edu/~jsteinsson/papers/realratesreplication.zip


JACOBSON, MATTHES & WALKER: TEMPORAL AGGREGATION BIAS

t index FOMC announcements and the changes in the five interest rate futures be given as:

mp1t : change in federal fund futures expiring at the end of the month of the FOMC announcement

mp2t : change in federal funds futures expiring at the end of the month of the next scheduled FOMC

announcement

ed2t : change in eurodollar futures expiring in the next quarter from the FOMC announcement

(called 2nd contract)

ed3t : change in eurodollar futures expiring two quarters after the FOMC announcement

(called 3rd contract)

ed4t : change in eurodollar futures expiring three quarters after the FOMC announcement

(called 4th contract)

The calculations underlying the above series are given below.28 Let s index the month of the current

FOMC announcement and s′ index the month of the next FOMC announcement. For example, s =
March 2014 and s′ = April 2014 for the March 19, 2014 FOMC announcement where s and s′ need not

be consecutive months. We define t more precisely as 20 minutes after the FOMC announcement while

t −∆t is defined as 10 minutes before the FOMC announcement.29 For the March 19, 2014 FOMC an-

nouncement which occurred at 14:00, t = March 19, 2014 14:20 and t −∆t = March 19, 2014 13:50. Let q

index the quarter of the current FOMC announcement and q +1 index the of the next FOMC announce-

ment. For example, q = 2014:Q1, q + 1 = 2014:Q2, and q + 2 = 2014:Q3 for the March 19, 2014 FOMC

announcement.

mp1t = D1

D1−d1
( f f 1s,t − f f 1s,t−∆t ) (14)

mp2t = D2

D2−d2

[
( f f 2s′,t − f f 2s′,t−∆t )− d2

D2
mp1t

]
(15)

ed2t =ed2q+1,t −ed2q+1,t−∆t (16)

ed3t =ed3q+2,t −ed3q+2,t−∆t (17)

ed4t =ed4q+3,t −ed4q+3,t−∆t (18)

For month s indexing the current FOMC announcement...

28Nakamura and Steinsson (2018a) explain that, “A eurodollar futures contract expiring in a particular quarter (say 2nd quar-
ter 2004) is an agreement to exchange, on the second London business day before the third Wednesday of the last month of the
quarter (typically a Monday near the 15th of the month), the price of the contract p for 100 minus the then current three-month
US dollar BBA LIBOR interest rate."

29In practice, the windows are not always this precise and we follow the online Appendix of Nakamura and Steinsson (2018a).
For the t −∆t contact, we use the contract as close to the 10 minutes before the policy announcement as possible and only
consider trades on the day in question. For the t contract, we similarly use the contract as close to the 20 minutes after the
announcement as possible and consider trades as late as noon on the following day. If there are no eligible trades to consider,
the change is set to zero (i.e., we interpret no trading as no price change). We source the time of the announcements from the
Federal Reserve Board and then from Gürkaynak et al. (2005) and Bloomberg News Wire. If there is a conflict in announcement
times, we follow this order of priority.
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mp1t : monetary policy surprise

D1 : number of days in month

d1 : day of month

f f 1s,t−∆t : federal funds futures contract at most 10 minutes before

f f 1s,t : federal funds futures contract at least 20 minutes after

For month s′ indexing the next scheduled FOMC announcement...

mp2t : monetary policy surprise

D2 : number of days in the month

d2 : day of month

f f 2s′,t−∆t : federal funds futures contract at most 10 min. before

f f 2s′,t : federal funds futures contract at least 20 min. after

For quarter q indexing the current FOMC announcement...

ed2q+1,t−∆t : 2nd expiring eurodollar futures contract at most 10 minutes before

ed2q+1,t : 2nd expiring eurodollar futures contract at least 20 minutes after

ed3q+2,t−∆t : 3rd expiring eurodollar futures contract at most 10 minutes before

ed3q+2,t : 3rd expiring eurodollar futures contract at least 20 minutes after

ed4q+3,t−∆t : 4th expiring eurodollar futures contract at most 10 minutes before

ed4q+3,t : 4th expiring eurodollar futures contract at least 20 minutes after

If the current FOMC announcement occurs in the last 7 days of the month then the scaling is not used as

it may be quite large towards the end of the month. Instead, the future’s contract for the month following

that of the current FOMC announcement is used, s +1. For example, the futures contract for February

2015 would be used instead of January 2015 for the January 28, 2015 announcement.

mp1t =( f f 1s+1,t − f f 1s+1,t−∆t ) (1.a)

And similarly if the next scheduled FOMC announcement occurs in the last 7 days of the month, the

following month’s futures contract is is used, s′+1. For example, the announcement following that on

March 18, 2015 is on April 29, 2015 would use the futures contract for May 2015 instead of April 2015.

mp2t =( f f 2s′+1,t − f f 2s′+1,t−∆t ) (2.a)

The monetary policy shock is then the first principal component of expressions (14)-(18) scaled so

that its effect on one-year nominal Treasury yields is equal to one.
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BU ET AL. (2021) MONETARY POLICY SHOCK Daily monetary policy shock are available from 1994 to

2020.30 This shock series is constructed by a Fama and MacBeth (1973) two-step procedure that extracts

unobserved monetary policy shocks ∆it from the common component of the change in zero-coupon

yields ∆R j ,t .

1. estimate sensitivity of yields with maturity j = 1, ...,30 to monetary policy via time-series regres-

sions
∆R j ,t =α j +β j∆it +ϵ j ,t

assume ∆it is one-to-one with two-year yield ∆R2,t to allow for normalization

∆R j ,t = θ j +β j∆R2,t +ϵ j ,t −β j ϵ2,t︸ ︷︷ ︸
ξ j ,t

corr(∆R j ,t , ξi ,t ) due toβ j ϵ2,t reconciled with IV or the heteroskedasticity-based estimator of Rigobon

(2003).

2. recover aligned monetary policy shock ∆i al i g ned
t form cross-sectional regressions of ∆R j ,t on the

sensitivity index β̂ j for each FOMC announcement t

∆R j ,t =α j +∆i al i g ned
t β̂ j + v j ,t , t = 1, ...,T

3. re-scale the shock. We follow Bu et al. (2021) and use 2-year Treasuries, but our results are robust

to scaling by 1-year Treasuries to match the scaling of the NS shocks.

30Series BRW_fomc of spreadsheet brw-shock-series.csv https://www.federalreserve.gov/econres/feds/files/brw-shock-
series.csv
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